参考文献
[1]Couairon A, Sudrie L, Franco M ,et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B - Condensed Matter and Materials Physics, 2005, 71(12): 1–11.
[2]Tamaki T, Watanabe W, Nishii J ,et al. Welding of Transparent Materials Using Femtosecond Laser Pulses[J]. Japanese Journal of Applied Physics, 2005, 44(No. 22): L687–L689.
[3]Satoshi K, Hong-Bo S, Tomokazu T ,et al. Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412: 697–698.
[4]Friedman N J, Palanker D V., Schuele G ,et al. Femtosecond laser capsulotomy[J]. Journal of Cataract & Refractive Surgery, ASCRS and ESCRS, 2011, 37(7): 1189–1198.[5]Drevinskas R, Beresna M, Zhang J ,et al. Ultrafast Laser-Induced Metasurfaces for Geometric Phase Manipulation[J]. Advanced Optical Materials, 2017, 5(1).
[6]Liao Y, Song J, Li E ,et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 2012, 12(4): 746–749.
[7]Parthenopoulos D A, Renetzepis P M. Three-Dimensional Optical Storage Memory[J]. Science, 1989, 245: 843.
[8]Yong J, Chen F, Yang Q ,et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. J. Mater. Chem. A, 2014, 2(23): 8790–8795.
[9]Huang X, Guo Q, Yang D ,et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2019.
[10]Kim D, Keesling A, Omran A ,et al. Large-scale uniform optical focus array generation with a phase spatial light modulator[J]. Optics Letters, 2019, 44(12): 3178.
[11]Zhang C, Hu Y, Du W ,et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, Nature Publishing Group, 2016, 6(August): 1–9.
[12]Yang D, Liu L, Gong Q ,et al. Rapid Two-Photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering[J]. Macromolecular Rapid Communications, 2019, 40(8).
[13]Allegre O J, Jin Y, Perrie W ,et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Optics Express, 2013, 21(18): 21198.
[14]Gauthier G, Lenton I, McKay Parry N ,et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials[J]. Optica, 2016, 3(10): 1136.
[15]Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[A]. H. Urey. MOEMS Display and Imaging Systems[C]. 2003, 4985(Dmd): 14.
[16]Zhang Z, You Z, Chu D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices[J]. Light: Science & Applications, 2014, 3(10): e213–e213.
[17]Reichelt S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators[J]. Applied Optics, 2013, 52(12): 2610.
[18]Cotter L K, Drabik T J, Dillon R J ,et al. Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator[J]. Optics Letters, 1990, 15(5): 291.
[19]R. W. Gerchberg, W. O.Saxton. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures[J]. Optik, 1972, 35: 237–246.
[20]Soifer V A. Iteractive Methods For Diffractive Optical Elements Computation[M]. Iterative Methods for Diffractive Optical Elements Computation, CRC Press, 2014.
[21]Dufresne E R, Spalding G C, Dearing M T ,et al. Computer-generated holographic optical tweezer arrays[J]. Review of Scientific Instruments, 2001, 72(3): 1810.
[22]Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1–6): 169–175.
[23]Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Opt. Express, OSA, 2007, 15(4): 1913–1922.
[24]Poland S P, Krstajić N, Knight R D ,et al. Development of a doubly weighted Gerchberg–Saxton algorithm for use in multibeam imaging applications[J]. Optics Letters, 2014, 39(8): 2431.
[25]Zhang J, Čerkauskaitė A, Drevinskas R ,et al. Eternal 5D data storage by ultrafast laser writing in glass[A]. U. Klotzbach, K. Washio, C.B. Arnold. Spie[C]. 2016, 9736: 97360U.
[26]Yang G, Dong B, Gu B ,et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 1994, 33(2): 209.
[27]Yan S. Research on the Weighted Yang-Gu Algorithm[J]. Acta Photonica Sinica, 2007, 3.
[28]Bengtsson J. Kinoform design with an optimal-rotation-angle method[J]. Applied Optics, 1994, 33(29): 6879.
[29]Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication.[J]. Optics letters, 2011, 36(3): 406–408.
[30]Pang H, Wang J, Zhang M ,et al. Non-iterative phase-only Fourier hologram generation with high image quality[J]. Optics Express, 2017, 25(13): 14323.
[31]Mengu D, Ulusoy E, Urey H. Non-iterative phase hologram computation for low speckle holographic image projection[J]. Optics Express, 2016, 24(5): 4462.
[32]Zhang J, Pégard N, Zhong J ,et al. 3D computer-generated holography by non-convex optimization[J]. Optica, 2017, 4(10): 1306.[33]Makowski M. Iterative design of multiplane holograms: experiments and applications[J]. Optical Engineering, 2007, 46(4): 045802.[34]Sinclair G, Leach J, Jordan P ,et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Optics Express, 2004, 12(8): 1665.
[35]Ren H, Lin H, Li X ,et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array[J]. Optics Letters, 2014, 39(6): 1621.
[36]Pozzi P, Maddalena L, Ceffa N ,et al. Fast Calculation of Computer Generated Holograms for 3D Photostimulation through Compressive-Sensing Gerchberg–Saxton Algorithm[J]. Methods and Protocols, 2018, 2(1): 2.
[37]Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1–3): 503–528.
[38]Curtis F E, Que X. A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees[J]. Mathematical Programming Computation, Springer Berlin Heidelberg, 2015, 7(4): 399–428.
[39]Sinha A, Lee J, Li S ,et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117.
[40]Lin X, Lin X, Rivenson Y ,et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004–1008.
[41]Wiecha P R, Lecestre A, Mallet N ,et al. Pushing the limits of optical information storage using deep learning[J]. Nature Nanotechnology, Springer US, 2018, 14(3): 237–244.
[42]Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 2018, 57(14): 3859.
[43]Pasienski M, DeMarco B. A high-accuracy algorithm for designing arbitrary holographic atom traps[J]. Optics Express, 2008, 16(3): 2176.
[44]Montes-Usategui M, Pleguezuelos E, Andilla J ,et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components[J]. Optics Express, 2006, 14(6): 2101.
[45]Williams H E, Luo Z, Kuebler S M. Effect of refractive index mismatch on multi-photon direct laser writing[J]. Optics Express, 2012, 20(22): 25030.
[46]Marcinkevičius A, Mizeikis V, Juodkazis S ,et al. Effect of refractive index-mismatch on laser microfabrication in silica glass[J]. Applied Physics A: Materials Science & Processing, 2003, 76(2): 257–260.
[47]Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 2010, 18(20): 21090.
[48]Salter P S, Booth M J. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face[J]. Optics Express, 2012, 20(18): 19978.
[49]Sun Q, Jiang H, Liu Y ,et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(11): 655–659.
[50]Booth M J, Schwertner M, Wilson T ,et al. Predictive aberration correction for multilayer optical data storage[J]. Applied Physics Letters, 2006, 88(3): 031109.
[51]Itoh H, Matsumoto N, Inoue T. Spherical aberration correction suitable for a wavefront controller[J]. Optics Express, 2009, 17(16): 14367.
[52]Salter P S, Woolley M J, Morris S M ,et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation[J]. Optics Letters, 2018, 43(24): 5993.
[53]Wang P, Qi J, Liu Z ,et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, Nature Publishing Group, 2017, 7(1): 41211.
[54]Stone A, Jain H, Dierolf V ,et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. Journal of the Optical Society of America B, 2013, 30(5): 1234.
[55]Kato J, Takeyasu N, Adachi Y ,et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 2005, 86(4): 044102.
[56]Kamali S M, Arbabi E, Arbabi A ,et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002–1008.
[57]Hayasaki Y, Sugimoto T, Takita A ,et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 2005, 87(3): 031101.
[58]Obata K, Koch J, Hinze U ,et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation.[J]. Optics express, 2010, 18(16): 17193–17200.
[59]Zandrini T, Shan O, Parodi V ,et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine[J]. Scientific Reports, Springer US, 2019, 9(1): 11761.
[60]Gittard S D, Nguyen A, Obata K ,et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2011, 2(11): 3167.
[61]Zhang J, Gecevičius M, Beresna M ,et al. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass[J]. Physical Review Letters, 2014, 112(3): 033901.
[62]Silvennoinen M, Kaakkunen J, Paivasaari K ,et al. Parallel microstructuring using femtosecond laser and spatial light modulator[J]. Physics Procedia, Elsevier Srl, 2013, 41: 693–697.
[63]Li J, Tang Y, Kuang Z ,et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, Elsevier Ltd, 2019, 112(August 2018): 59–67.
[64]Liu L, Yang D, Wan W ,et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction[J]. Nanophotonics, 2019, 8(6): 1087–1093.[65]Hernandez O, Papagiakoumou E, Tanese D ,et al. Three-dimensional spatiotemporal focusing of holographic patterns[J]. Nature Communications, Nature Publishing Group, 2016, 7(May): 1–10.
[66]Sun B, Salter P S, Roider C ,et al. Four-dimensional light shaping: Manipulating ultrafast spatiotemporal foci in space and time[J]. Light: Science and Applications, Nature Publishing Group, 2018, 7(1): 17117.
[67]Saha S K, Wang D, Nguyen V H ,et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105–109.
[68]Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 1988, 5(8): 1563.
[69]Ma J, Cheng W, Zhang S ,et al. Coherent quantum control of two-photon absorption and polymerization by shaped ultrashort laser pulses[J]. Laser Physics Letters, 2013, 10(8).
[70]Zheng Y, Yao Y, Deng L ,et al. Valence state manipulation of Sm^3+ ions via a phase-shaped femtosecond laser field[J]. Photonics Research, 2018, 6(2): 144.
[71]Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 2015, 40(21): 4843.
[72]Wang X-L, Ding J, Ni W-J ,et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549.
[73]Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 2017, 25(21): 25697.
[74]Gan Z, Cao Y, Evans R a ,et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature communications, Nature Publishing Group, 2013, 4(May): 2061.
[75]Li X, Cao Y, Tian N ,et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567.
[76]Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam[J]. Applied Physics Letters, 2013, 102(8).
[77]Yang L, Qian D, Xin C ,et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Applied Physics Letters, 2017, 110(22).
[78]Ni J, Wang C, Zhang C ,et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science and Applications, Nature Publishing Group, 2017, 6(7).
[79]Wang C, Yang L, Hu Y ,et al. Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects[J]. ACS Nano, American Chemical Society, 2019, 13(4): 4667–4676.
作者简介:刘思垣(1994-),男,硕士研究生,主要从事超快激光加工、全息图算法的研究。E-mail:Siyuan_liu@hust.edu.cn
导师简介:张静宇(1989-),男,博士,研究员,博士生导师,主要从事超快激光加工、多维度光存储的研究。E-mail:jy_z@hust.edu.cn