解决方案
服务只有起点,满意没有终点,致力于为客户提供增值服务

当前所在位置

基于空间光调制器的超快激光加工原理及应用(下)

来源: | 作者:topphotonics | 发布时间: 2020-09-21 | 4455 次浏览 | 分享到:


4   空间光调制器在超快激光加工中的应用
由于空间光调制器可以方便快捷地对激光光场进行调制,因此在超快激光加工领域得到了广泛的应用。本节将对空间光调制器在超快激光加工中的应用进行介绍,根据不同的实验目的,空间光调制器有着不同的使用方法,光路系统也不局限于4f系统。

4.1  像差矫正
像差的主要来源是激光加工过程中激光通过介质表面时由于折射率发生变化而导致的折射率不匹配。像差的存在会使得聚焦光场的强度分布和目标光场强度分布产生偏差,影响加工时光场的三维分布、降低加工精度、提高加工阈值,甚至无法加工出目标结构[46,45]。折射率不匹配所引入的球差与聚焦物镜的数值孔径、介质折射率、以及材料的加工深度等参数有关。如图4 (a)所示,由于界面两侧材料的折射率不同,激光在穿过介质表面时会发生折射,当使用物镜聚焦时,不同位置的激光入射角度不一样使得折射的角度不同,导致接近中心的光线与接近边缘的光线不再聚焦于同一点,而是沿着光的传播方向有所拉伸产生球差,这将对激光加工产生不利影响[47]。尤其是当使用高数值孔径的物镜进行加工时,由于边缘光线的入射角较大,球差的影响更加明显。
此外,当激光焦点靠近样品边缘时,除了有上述的球差,部分激光会从样品侧面入射到样品内部而并不是从上表面,这种情况会引入较大的像差,且焦点距离样品边缘越近,像差越大(图4 (b))[48]。


图4  激光加工时产生像差的示意图。
(a)激光聚焦到样品内部引入球差的示意图[47];(b)激光靠近样品边缘时引入像差的示意图[48]
Fig. 4 Schematics of aberrations induced during laser fabrication. (a) Spherical aberration[47];
(b) ray trace diagrams indicating aberrations due to material edge[48]



超快激光加工过程中像差产生的主要因素是介质折射率不匹配,可以通过几何光学对其进行计算[49,48,47],并利用空间光调制器的相位调制功能在激光加工时进行矫正。例如,利用像差矫正技术,可以在金刚石和熔融石英内部加工出三维螺旋点阵列的结构(图5 (a))[47]。此外,在多维度光存储应用中需要在介质不同的深度进行数据的写入和读取,因此会受到球差的影响,使用预测像差的方法可以利用空间光调制器对象差进行矫正[50]。结合反向光线追迹方法和使用预失真相位图,不同加工深度所引入的像差可以通过迭代算法生成的全息图得以矫正,使光斑失真程度达到最小[51]。类似于激光从样品边缘入射的情况,利用空间光调制器可以对圆柱形界面进行像差补偿,利用超快激光加工实现了在光纤截面任意一点的精确加工,制造了一种对偏振不敏感的光纤布拉格光栅(图5 (b))[52]。在超快激光写入光波导应用中,利用空间光调制器可以对像差进行矫正,构造三维多层光通路,在铌酸锂晶体中加工出偏振无关的光波导结构(图5 (d))[53]。除了对单个界面进行像差矫正,还可以利用空间光调制器对多个折射层的像差进行矫正,实现了超快激光透过石英玻璃对LBGO玻璃进行无像差的加工(图5 (c))[54]。 

图5 (a)在金刚石和熔融石英内部用螺旋状光斑点阵进行超快激光加工,像差矫正前后对比图[47];
(b) 利用超快激光加工光纤像差矫正前后对比图,左边为矫正后结果,右边为未矫正结果[52];
(c) 利用全息技术矫正前后不同深度处的结果,其中,每一列分别为不同深度处加工的结果(依次为0.5mm、1mm、经过石英玻璃后0.5mm、1mm表面以下),左边是为未矫正的结果右边是矫正后的结果[54];
(d)像差矫正前后加工光波导对比图,左上图为未矫正像差时加工的结果,右上图为像差矫正后加工的结果,左下图为像差矫正后加工出的光波导横截面图,右下图为光波导在s偏振和p偏振光束下的近场模[53]Fig. 5
(a) Helical dots array fabricated in diamond and fused silica with and with aberration compensation [47];
(b) structures fabricated inside optical fiber with (left) and without (right) aberration compensation[52];
(c) structures fabricated 0.5mm, 1mm, 0.5mm(through a silica glass window),1mm(through a silica glass window) below the surface without (left) and with (right) aberration compensation[54];
(d) optical microscope images of fabricated structures without (top left) and with (top right) aberration compensation, fabricated waveguide with aberration compensation (down left), near-field mode profile of s-polarized and p-polarized beam in the fabricated waveguide (down right) [53]


当界面两侧折射率差别较大、加工深度较深、聚焦物镜数值孔径较大时,像差会对超快激光加工质量产生较大的不利影响,降低水平方向上的加工精度、增加纵向的结构长度。通过以上算法计算所需的全息图,结合空间光调制器可以快速便捷地对像差进行矫正,提升超快激光加工的精度和质量。

4.2   多焦点并行加工
同时产生多个焦点在样品的不同二维或三维位置进行并行加工,可以成倍地提升加工效率。多焦点并行加工可以通过使用微透镜阵列[55]、超表面结构[56]等方法实现,但是它们的制备较为复杂,并且往往只能生成固定的光斑阵列,使用起来不够灵活。空间光调制器可以很好地解决这些问题,利用全息图技术对入射光进行相位调制可以快速地生成各种目标光场进行多焦点加工,并且通过切换全息图来实时地调制目标光场进行二维、三维结构的快速加工,有着广泛的应用。

图6 基于空间光调制器的超快激光并行加工系统[57]Fig. 6
Schematic diagram of ultrafast laser parallel material processing system based on spatial light modulator[57]

基于4f系统,一套利用空间光调制器、全息图可变的并行加工系统可以被搭建(图6 ),使用GS算法生成不同光斑点阵分布所需的全息图,在加工的过程中将全息图更新到空间光调制器上,用超快激光在玻璃表面实现了不同字母点阵的快速打印(图7 (a))[57]。这套系统即是基于空间光调制器的超快激光并行加工应用中最常见的光路。利用该系统可以实现多焦点的双光子聚合加工,全息图的刷新频率可达20Hz,可加工出弯曲、非对称的二维结构,还可通过控制焦点的个数和位置,结合扫描的方法加工出不同形状的三维结构[58]。多焦点的双光子聚合技术还可用于人体组织工程支架、微针阵列、细胞培养基等功能性生物、医疗微器件的制备,大幅提升了加工效率、精度(图7 (b))[60,59]。超快激光多焦点并行加工技术也可用于提升多维度光存储的写入速度,通过多焦点阵列和半波片阵列可以动态改变单个焦点的强度及偏振状态,将多维数据快速地写入到熔融石英碟片中,实现数据的永久五维存储(图8 (a))[61]。多焦点超快激光加工系统可产生多达576个焦点的阵列对硅和不锈钢等材料进行并行加工[62]。甚至生成1500个焦点的阵列[10],实际加工时阵列焦点个数受限于空间光调制器像素个数、加工激光功率、空间光调制器阈值、物镜通光孔径等因素。上述并行加工技术产生的都是二维平面上的多焦点,还可以利用基于德拜衍射理论的三维傅里叶变换得到全息图,生成三维空间的多焦点阵列,并且可以对因界面折射率不匹配、不同聚焦深度产生的像差进行补偿,实现三维光存储的多层并行写入(图8 (b))[35]。


图7 (a) 利用并行加工技术加工的字母点阵图案光学显微镜图像[57];
(b)利用多焦点扫描技术加工出的三维细胞培养基底的扫描电镜图像[59]
Fig. 7 (a) Optical microscope image of the character dots array fabricated with multi-foci technique[57] ;
(b) SEM images of the fabricated cell culture substrates by 4-foci scan (left) and 6-foci scan (right) parallel 3D printing[59]





图8 (a)利用多焦点阵列实现五维永久光存储数据的写入[61];
(b)基于德拜衍射理论得到的,经像差矫正后的三维多焦点阵列[35]
Fig. 8 (a) Five-dimensional permanent optical data storage recording by multi-foci parallel writing[61];
(b) Experimental results of a volumetric multifocal array generated by a Debye-based 3D
Fourier transform algorithm together with aberration compensation[35]


除了使用多焦点进行并行加工,还可以通过对激光的波前进行调制,将聚焦光束调制成目标图案直接进行加工。例如用两个空间光调制器实现多目标图案的平行加工,第一个空间光调制器对振幅进行调制来得到需要加工的形状,第二个空间光调制器则是用来生成多光束进行超快激光并行加工,实现二维图案的阵列打印[63]。

4.3   聚焦体积内三维光场调制
对于三维结构,可以运用前文提到的三维光场调控技术,使用杨顾算法并在迭代过程中加入强度调制,通过单次曝光、单次扫描,或者两者相结合,即可加工光敏树脂得到复杂的三维结构(图9 (a))[12],或在含有银离子的水溶液中加工出具有圆二向色性的三维双螺旋结构(图9 (b))[64]。


图9 (a)通过对焦点光场进行三维调控打印出的三维结构的SEM图:
通过单次曝光打印出的三维字母图案(左)、通过单次扫描打印出的三维长城结构(中)、利用单次曝光和单次扫描相结合制备的三维玫瑰花结构(右)[12];
(b)利用空间光调制器单次曝光加工出的三维双螺旋结构[64]
Fig. 9 (a) SEM images of the 3D microstructures via single-exposure (left), 1D single-scan (middle) and single-exposure& single-scan combined (right) [12];
(b) 3D double-helix structures fabricated by single-exposure based on SLM holography[64]


4.4   脉冲时空整形
空间光调制器可以用于时空同步聚焦系统。在传统的超快激光时空同步聚焦系统中,超快激光不同频率成分经过色散器件后在空间上展开,再经过透镜将光进行聚焦,在焦平面上实现光斑空间尺寸的最小值,和脉冲宽度的最小值。在焦平面以外的地方不同频率的光在空间上分散且脉冲宽度长,导致峰值功率较低而不足以产生非线性吸收现象,使时空聚焦系统沿光传播方向有更高的分辨率。但因此,传统的光学系统无法实现三维的多焦点时空同步聚焦,只能在焦平面附近构建二维的目标光场。三维的时空同步聚焦技术可以通过两个空间光调制器来实现,分别控制垂直于光传播方向上目标光场的强度分布和时空同步聚焦沿着光传播方向的聚焦位置[65]。使用这套系统可以摆脱传统时空聚焦系统轴向位置单一的约束,使得时空同步聚焦技术的使用更加方便灵活。该系统还可以简化,仅使用一个空间光调制器,即可生成时空分离的三维点阵,相邻焦点在空间上紧邻,但在时域上分离,从而克服传统多焦点情况下相邻焦点间的互相干扰,降低了点间距,实现了超快激光的四维(空间三维和时域维度)并行加工(图10 (a)(b))[66]。另外,如果将DMD用作一个色散元器件,那么时空同步聚焦光路中常用的光栅也可以被省略,结合DMD的高刷新频率可以实现纳米级精度的快速3D打印,通过单次聚焦即可在毫秒时间量级内制造出复杂的三维结构,这些结构是传统超快激光直写扫描系统难以加工得到的(图10(c))[67]。

图10(a)超快激光时空同步聚焦并行加工的光路示意图[66];
(b)该系统生成的三维多焦点阵列及其加工结果[66];
(c)超快激光时空同步聚焦并行加工出的复杂三维结构[67]
Fig. 10 (a) Schematic of the experimental setup of multi-foci simultaneous spatial and temporal focusing(SSTF) laser material processing[66]; 
(b) single-exposure fabrication of 3D dots array by 11 spatiotemporal beam spots[66]; 
(c) complex 3D structures printed by ultrafast laser SSTF parallel processing[67]

由于超快激光脉冲持续时间极短,较难在时域上直接对脉冲进行调制,在一些情况下可以利用透镜前后焦平面互为傅里叶变换的关系对脉冲进行时域整形。脉冲时域整形技术通常使用的系统为上文所提到的4f系统。利用这套系统可以对超快激光脉冲进行调制,形成特定脉冲形状的超快激光,对不同形状的脉冲进行编码和解码,可以运用于光通信领域[68]。对800nm的飞秒激光脉冲进行时域整形可以对光引发剂ITX(isopropyl thioxanthone)的双光子吸收和聚合实现相干控制,用这种技术制造出的微棒结构的尺寸可以达到衍射极限的1/25[69]。飞秒激光可以实现稀土离子的价态转换,但是通常转换效率较低,利用飞秒激光时域整形技术可以提高稀土离子的价态转换效率[70]。脉冲时域整形技术的应用范围很广,一直受到人们的广泛关注,有着巨大的发展潜力。

4.5   结构光场的产生及应用
由于结构光场有着特殊的相位、偏振特性,表现出独特的光学性质,在多个领域有着广泛的应用。使用空间光调制器可以方便快捷地产生这些有着特殊相位、偏振的结构光场,在超快激光加工领域有着广泛的应用,本节将对超快激光加工领域中利用空间光调制器引入结构光场的应用作介绍。使用空间光调制器通过加入涡旋相位可以产生带有轨道角动量的涡旋光束,利用光路和其他光学元器件可以实现多种矢量光束和一些有特殊性质的光场。将单个空间光调制器分为两个区域放置不同的全息图,激光先后经过这两个区域进行两次调制后,可以生成高阶的矢量光场(图11 (a))[71],利用单个空间光调制器及4f系统可以产生任意矢量光束[72],还可以用单个空间光调制器和相干叠加光路实现不同偏振矢量的多光斑阵列(图11 (b))[73]。以上光路都可以用于超快激光加工,使用空间光调制器进行相位和偏振调制,可以生成多个结构光场光斑进行并行加工,在金属表面生成各向异性的周期性结构[13]。

图11 (a)通过在空间光调制器不同区域反射两次,生成了16种不同的结构光场[71];
(b)利用空间光调制器得到16个不同矢量分布的光束阵列[73]
 Fig. 11 (a) 16 different structured light beams generated by a single SLM double reflection arrangement[71]; 
(b) a 16-vector-Bessel-beam-array generated by using SLM[73] 

结构光场可以应用在基于STED(Stimulated Emission Depletion)光路的超快激光超分辨光激发-光抑制SPIN(Superresolution Photoinduction-inhibited Nanolithography)加工系统中,用高斯光作加工光引发双光子聚合,用空心结构光作抑制光激发光抑制剂阻断树脂聚合,当两束光合在一起加工时即可以达到超衍射极限加工的效果[74]。这样的超分辨加工技术可以同并行加工技术相结合,利用两个空间光调制器分别生成高斯光束阵列和涡旋光束阵列,实现超分辨的三维多焦点阵列的并行加工(图12 (a))[75]。利用结构光场特殊的性质可以加工出一些普通光场难以加工出的复杂结构。例如通过涡旋光束相位叠加,在聚合物中并行加工出开口环结构阵列(图12 (b))[76]。通过改变加载在光学涡旋上的相位因子,可以一次成型加工出复杂的三维微管结构(图12 (c))[77],在此基础上利用平面波和涡旋光的同轴干涉可以生成三维带手性的光场,利用这种光场对各向同性的介质进行加工,可以制备三维手性微结构[78]。利用空间光调制器还可以生成贝塞尔(Bessel)光束和马蒂厄(Mathieu)光束,通过切换不同的全息图可以快速改变加工光束的类型,通过纵向扫描的方式对聚合物进行加工,得到三维微笼结构,可用来捕获微小的物体(图12 (d))[79]。

图12 (a)利用空间光调制器进行超衍射并行存储原理图[75];
(b)利用双涡旋光束叠加得到的缺口环结构[76];
(c)对涡旋光的相位因子进行调控得到的不同的微结构[77];
(d)利用贝塞尔光束和马蒂厄光束加工出的微笼结构[79]Fig. 12
(a) Super-resolved multifocal parallel data recording based on SLMs[75]; 
(b) split- ring structure array fabricated by a superpositioned two circularly polarized vortex beams[76];
(c) microstructures fabricated by single exposure of femtosecond optical vortices with different fold number and modulation depth[77]; 
(d) microcages fabricated by Bessel and Mathieu beams[79]

使用空间光调制器及全息图技术可以快速地产生一些特殊的结构光场,利用这些结构光场进行超快激光加工可以快速、高分辨、高质量的生成复杂的二维、三维结构。但是利用结构光场加工具有一定的局限性,无法加工得到任意结构,相关的全息图生成技术还有继续发展的空间。

5   结束语
空间光调制器为超快激光加工带来了极大的便利,通过不同的全息图算法可以得到不同的二维、三维的目标光场,从而快速、高精度的加工得到所需结构。利用空间光调制器进行多焦点阵列的并行加工极大地提升了加工效率,更可贵的是该技术可以同多种光场调制技术相结合,如像差矫正、时空同步聚焦、结构光场等,实现多种特殊应用场景下的超快激光并行加工。通过全息图对聚焦体积内的二维、三维、甚至四维光场进行操控,实现了对各种复杂结构的并行加工、扫描加工、一次曝光成型、超分辨加工等。结合色散系统,空间光调制器也可实现超快激光时空同步聚焦加工和脉冲时域整形加工。通过空间光调制器可以产生任意涡旋光、矢量光束,进一步丰富了超快激光并行加工技术的使用场景。空间光调制器的使用方式灵活多变,还有很多潜在的应用场景有待挖掘。然而利用空间光调制器进行超快激光加工受到了空间光调制器本身,如刷新频率、分辨率、相位灰阶数、像素个数、填充因子等参数的限制,并且全息图的计算速度以及生成光场的质量仍有提升的空间。向列型液晶空间光调制器拥有较多的相位调制灰阶,较高的分辨率,可以生成复杂的相位全息图,引入水冷模块后可以承受高功率的飞秒激光照射,但是刷新频率较低阻碍了其在工业上的应用。而基于MEMS的DMD有着更高的刷新频率,在工业中应用更为广泛,如何将两者的优势结合起来,生产出高质量、高刷新频率、高阈值的空间光调制器用于超快激光加工是一个有待解决的问题。根据不同的超快激光应用场景需要选择合适的算法、光学系统,希望本篇综述能够给从事相关领域的研究人员带来一些帮助,在实际应用时能够找到适合的算法,设计出理想的光学系统,收获一系列有鲜明特色的研究成果。

参考文献
[1]Couairon A, Sudrie L, Franco M ,et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B - Condensed Matter and Materials Physics, 2005, 71(12): 1–11.
[2]Tamaki T, Watanabe W, Nishii J ,et al. Welding of Transparent Materials Using Femtosecond Laser Pulses[J]. Japanese Journal of Applied Physics, 2005, 44(No. 22): L687–L689.
[3]Satoshi K, Hong-Bo S, Tomokazu T ,et al. Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412: 697–698.
[4]Friedman N J, Palanker D V., Schuele G ,et al. Femtosecond laser capsulotomy[J]. Journal of Cataract & Refractive Surgery, ASCRS and ESCRS, 2011, 37(7): 1189–1198.[5]Drevinskas R, Beresna M, Zhang J ,et al. Ultrafast Laser-Induced Metasurfaces for Geometric Phase Manipulation[J]. Advanced Optical Materials, 2017, 5(1).
[6]Liao Y, Song J, Li E ,et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 2012, 12(4): 746–749.
[7]Parthenopoulos D A, Renetzepis P M. Three-Dimensional Optical Storage Memory[J]. Science, 1989, 245: 843.
[8]Yong J, Chen F, Yang Q ,et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. J. Mater. Chem. A, 2014, 2(23): 8790–8795.
[9]Huang X, Guo Q, Yang D ,et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2019.
[10]Kim D, Keesling A, Omran A ,et al. Large-scale uniform optical focus array generation with a phase spatial light modulator[J]. Optics Letters, 2019, 44(12): 3178.
[11]Zhang C, Hu Y, Du W ,et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, Nature Publishing Group, 2016, 6(August): 1–9.
[12]Yang D, Liu L, Gong Q ,et al. Rapid Two-Photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering[J]. Macromolecular Rapid Communications, 2019, 40(8).
[13]Allegre O J, Jin Y, Perrie W ,et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Optics Express, 2013, 21(18): 21198.
[14]Gauthier G, Lenton I, McKay Parry N ,et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials[J]. Optica, 2016, 3(10): 1136.
[15]Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[A]. H. Urey. MOEMS Display and Imaging Systems[C]. 2003, 4985(Dmd): 14.
[16]Zhang Z, You Z, Chu D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices[J]. Light: Science & Applications, 2014, 3(10): e213–e213.
[17]Reichelt S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators[J]. Applied Optics, 2013, 52(12): 2610.
[18]Cotter L K, Drabik T J, Dillon R J ,et al. Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator[J]. Optics Letters, 1990, 15(5): 291.
[19]R. W. Gerchberg, W. O.Saxton. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures[J]. Optik, 1972, 35: 237–246.
[20]Soifer V A. Iteractive Methods For Diffractive Optical Elements Computation[M]. Iterative Methods for Diffractive Optical Elements Computation, CRC Press, 2014.
[21]Dufresne E R, Spalding G C, Dearing M T ,et al. Computer-generated holographic optical tweezer arrays[J]. Review of Scientific Instruments, 2001, 72(3): 1810.
[22]Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1–6): 169–175.
[23]Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Opt. Express, OSA, 2007, 15(4): 1913–1922.
[24]Poland S P, Krstajić N, Knight R D ,et al. Development of a doubly weighted Gerchberg–Saxton algorithm for use in multibeam imaging applications[J]. Optics Letters, 2014, 39(8): 2431.
[25]Zhang J, Čerkauskaitė A, Drevinskas R ,et al. Eternal 5D data storage by ultrafast laser writing in glass[A]. U. Klotzbach, K. Washio, C.B. Arnold. Spie[C]. 2016, 9736: 97360U.
[26]Yang G, Dong B, Gu B ,et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 1994, 33(2): 209.
[27]Yan S. Research on the Weighted Yang-Gu Algorithm[J]. Acta Photonica Sinica, 2007, 3.
[28]Bengtsson J. Kinoform design with an optimal-rotation-angle method[J]. Applied Optics, 1994, 33(29): 6879.
[29]Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication.[J]. Optics letters, 2011, 36(3): 406–408.
[30]Pang H, Wang J, Zhang M ,et al. Non-iterative phase-only Fourier hologram generation with high image quality[J]. Optics Express, 2017, 25(13): 14323.
[31]Mengu D, Ulusoy E, Urey H. Non-iterative phase hologram computation for low speckle holographic image projection[J]. Optics Express, 2016, 24(5): 4462.
[32]Zhang J, Pégard N, Zhong J ,et al. 3D computer-generated holography by non-convex optimization[J]. Optica, 2017, 4(10): 1306.[33]Makowski M. Iterative design of multiplane holograms: experiments and applications[J]. Optical Engineering, 2007, 46(4): 045802.[34]Sinclair G, Leach J, Jordan P ,et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Optics Express, 2004, 12(8): 1665.
[35]Ren H, Lin H, Li X ,et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array[J]. Optics Letters, 2014, 39(6): 1621.
[36]Pozzi P, Maddalena L, Ceffa N ,et al. Fast Calculation of Computer Generated Holograms for 3D Photostimulation through Compressive-Sensing Gerchberg–Saxton Algorithm[J]. Methods and Protocols, 2018, 2(1): 2.
[37]Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1–3): 503–528.
[38]Curtis F E, Que X. A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees[J]. Mathematical Programming Computation, Springer Berlin Heidelberg, 2015, 7(4): 399–428.
[39]Sinha A, Lee J, Li S ,et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117.
[40]Lin X, Lin X, Rivenson Y ,et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004–1008.
[41]Wiecha P R, Lecestre A, Mallet N ,et al. Pushing the limits of optical information storage using deep learning[J]. Nature Nanotechnology, Springer US, 2018, 14(3): 237–244.
[42]Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 2018, 57(14): 3859.
[43]Pasienski M, DeMarco B. A high-accuracy algorithm for designing arbitrary holographic atom traps[J]. Optics Express, 2008, 16(3): 2176.
[44]Montes-Usategui M, Pleguezuelos E, Andilla J ,et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components[J]. Optics Express, 2006, 14(6): 2101.
[45]Williams H E, Luo Z, Kuebler S M. Effect of refractive index mismatch on multi-photon direct laser writing[J]. Optics Express, 2012, 20(22): 25030.
[46]Marcinkevičius A, Mizeikis V, Juodkazis S ,et al. Effect of refractive index-mismatch on laser microfabrication in silica glass[J]. Applied Physics A: Materials Science & Processing, 2003, 76(2): 257–260.
[47]Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 2010, 18(20): 21090.
[48]Salter P S, Booth M J. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face[J]. Optics Express, 2012, 20(18): 19978.
[49]Sun Q, Jiang H, Liu Y ,et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(11): 655–659.
[50]Booth M J, Schwertner M, Wilson T ,et al. Predictive aberration correction for multilayer optical data storage[J]. Applied Physics Letters, 2006, 88(3): 031109.
[51]Itoh H, Matsumoto N, Inoue T. Spherical aberration correction suitable for a wavefront controller[J]. Optics Express, 2009, 17(16): 14367.
[52]Salter P S, Woolley M J, Morris S M ,et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation[J]. Optics Letters, 2018, 43(24): 5993.
[53]Wang P, Qi J, Liu Z ,et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, Nature Publishing Group, 2017, 7(1): 41211.
[54]Stone A, Jain H, Dierolf V ,et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. Journal of the Optical Society of America B, 2013, 30(5): 1234.
[55]Kato J, Takeyasu N, Adachi Y ,et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 2005, 86(4): 044102.
[56]Kamali S M, Arbabi E, Arbabi A ,et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002–1008.
[57]Hayasaki Y, Sugimoto T, Takita A ,et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 2005, 87(3): 031101.
[58]Obata K, Koch J, Hinze U ,et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation.[J]. Optics express, 2010, 18(16): 17193–17200.
[59]Zandrini T, Shan O, Parodi V ,et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine[J]. Scientific Reports, Springer US, 2019, 9(1): 11761.
[60]Gittard S D, Nguyen A, Obata K ,et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2011, 2(11): 3167.
[61]Zhang J, Gecevičius M, Beresna M ,et al. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass[J]. Physical Review Letters, 2014, 112(3): 033901.
[62]Silvennoinen M, Kaakkunen J, Paivasaari K ,et al. Parallel microstructuring using femtosecond laser and spatial light modulator[J]. Physics Procedia, Elsevier Srl, 2013, 41: 693–697.
[63]Li J, Tang Y, Kuang Z ,et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, Elsevier Ltd, 2019, 112(August 2018): 59–67.
[64]Liu L, Yang D, Wan W ,et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction[J]. Nanophotonics, 2019, 8(6): 1087–1093.[65]Hernandez O, Papagiakoumou E, Tanese D ,et al. Three-dimensional spatiotemporal focusing of holographic patterns[J]. Nature Communications, Nature Publishing Group, 2016, 7(May): 1–10.
[66]Sun B, Salter P S, Roider C ,et al. Four-dimensional light shaping: Manipulating ultrafast spatiotemporal foci in space and time[J]. Light: Science and Applications, Nature Publishing Group, 2018, 7(1): 17117.
[67]Saha S K, Wang D, Nguyen V H ,et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105–109.
[68]Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 1988, 5(8): 1563.
[69]Ma J, Cheng W, Zhang S ,et al. Coherent quantum control of two-photon absorption and polymerization by shaped ultrashort laser pulses[J]. Laser Physics Letters, 2013, 10(8).
[70]Zheng Y, Yao Y, Deng L ,et al. Valence state manipulation of Sm^3+ ions via a phase-shaped femtosecond laser field[J]. Photonics Research, 2018, 6(2): 144.
[71]Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 2015, 40(21): 4843.
[72]Wang X-L, Ding J, Ni W-J ,et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549.
[73]Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 2017, 25(21): 25697.
[74]Gan Z, Cao Y, Evans R a ,et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature communications, Nature Publishing Group, 2013, 4(May): 2061.
[75]Li X, Cao Y, Tian N ,et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567.
[76]Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam[J]. Applied Physics Letters, 2013, 102(8).
[77]Yang L, Qian D, Xin C ,et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Applied Physics Letters, 2017, 110(22).
[78]Ni J, Wang C, Zhang C ,et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science and Applications, Nature Publishing Group, 2017, 6(7).
[79]Wang C, Yang L, Hu Y ,et al. Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects[J]. ACS Nano, American Chemical Society, 2019, 13(4): 4667–4676.

作者简介:
刘思垣(1994-),男,硕士研究生,主要从事超快激光加工、全息图算法的研究。E-mail:Siyuan_liu@hust.edu.cn
导师简介:张静宇(1989-),男,博士,研究员,博士生导师,主要从事超快激光加工、多维度光存储的研究。E-mail:jy_z@hust.edu.cn


解决方案
询问表格
  • 百度
  • 搜狗
  • 微信公众号
  • 知乎
  • 必应
  • 其它
提交
您是怎么来到我们网站的?
推荐产品
关注公众号

     关注拓普光研订阅号

        

                      招贤纳士


关注北京拓普光研服务号


           市场新闻

           


相关阅读